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Systematic density expansion for random resistor networks 

M H Ernst, P F J van Velthoven and Th M Nieuwenhuizent 
Institute for Theoretical Physics, State University, P 0 Box 80.006, 3508 TA Utrecht, The 
Netherlands 

Received 19 May 1986, in final form 23 June 1986 

Abstract. We present a systematic density expansion for calculating transport properties, 
return probabilities and spectral densities for lattice hopping models with diluted random- 
ness. The method is applied to a disordered square lattice where the bonds carry conduct- 
ances U, and v2 in concentrations c and 1 - c, respectively, and we calculate explicitly the 
O(c) and O(cz) contributions to the static conductivity (diffusion coefficient) and to the 
coefficient p ( c )  of the long time tail in the velocity autocorrelation function (VACF) 

To O(c) the VACF is calculated for all times and shows negative correlations (cage 
(U, ( O ) U , (  I )) = - p ( c ) f  -2 .  

effect) for all times. 

Diffusive systems with static disorder, such as Lorentz gases, dynamic percolation, 
ants in a labyrinth, termite problems, random resistor networks, networks with normal 
and superelastic springs, etc, have received much attention recently. Such problems 
can be modelled by random walks on disordered lattices or equivalently by lattice 
dynamics of disordered harmonic crystals. 

For the case of diluted randomness, where only a random fraction c of bonds or 
sites of the host lattice have been replaced by impurities, we present a systematic 
expansion of DC and AC transport properties in powers of the impurity concentration 
c. In particular, we study a random walk on a square lattice with two types of bonds: 
impurity bonds with a transition rate (‘conductance’) a and bonds of the host lattice 
with conductance uo= 1. The model is a special case of the random barrier model 
(Haus et a1 1983, Derrida 1983), and for the I D  chain many properties have been 
calculated exactly by Denteneer and Ernst (1984); for instance, the static diffusion 
coefficient is given by D-’ = 2[ 1 + c( 1 - a) /a] .  The model describes bond percolation 
for a = O  and the termite problem for U>> 1 (Hong et al 1986). 

The purpose of this paper is to outline a kinetic theory approach for calculating 
static and time-dependent properties of RW on disordered lattices and to illustrate the 
power of this method by showing for the 2~ square lattice exact low density results 
for different quantities such as the static and time-dependent diffusion coefficient, the 
velocity autocorrelation function and frequency-dependent conductivity. The method 
can also be used for different dimensionality for higher moments of displacements and 
Burnett coefficients, probabilities of return and first passage, etc. 

Since calculations are lengthy, as is usual in kinetic theory, we have left out almost 
all analytical derivations of equations, as well as discussions on the methods used in 
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the numerical evaluation of the occurring lattice sums. These details together with 
further applications will be published elsewhere. 

Most theoretical and computer studies have concentrated on percolation problems 
(ants and termites) in the close vicinity of the percolation threshold. The standard 
methods to calculate transport properties for general impurity concentration are 
effective medium type approximations (EMA)  (Kirkpatrick 1973, Watson and Leath 
1974, Odagaki 1986, Garboczi and Thorpe 1986), single impurity approximations 
(Harris and Kirkpatrick 1977, Roerdink and Shuler 1985), transfer matrix methods 
(Herrmann et a1 1984), Monte Carlo simulations (Argyrakis and Kopelman 1980, 
Pandey and Stauff er 1983) and real space renormalisation group calculations (Stinch- 
combe and Watson 1976, Wilkinson et a1 1983, Luck 1985, Hong et a1 1986, Costa er 
a1 1986). Systematic density expansions for dynamics quantities (Fish and Harris 
1978) are not so well developed as for static ones (Coniglio et a1 1977, Gaunt and 
Sykes 1983). Here we calculate the static conductivity or the static diffusion coefficient 
D( c, a)  and the coefficient of the long time tail of the VACF, 4( t )  = -/3( c, a)/  t 2 ,  exact 
to terms of O ( c 2 )  included, for several values of the conductance ratio U. 

We further calculate the complete time dependence of the VACF to O( c )  and explain 
the cage effect (existence of negative velocity correlations) in terms of repeated 
backscattering by impurities (‘repeated ring collisions’). Our detailed predictions of 
the intermediate and long time behaviour of the VACF are presumably sufficient to 
allow a detailed comparison with the results of computer simulations, as appeared 
possible for the corresponding site problem (Nieuwenhuizen er a1 1986, Frenkel 1986). 
For deterministic Lorentz models a quantitative agreement on long time tails in the 
VACF, obtained from computer simulations and kinetic theory, is still lacking (Alder 
and Alley 1983, Ernst et a1 1984). In dense fluids, on the other hand, the agreement 
is satisfactory (Erpenbeck and Wood 1985). 

The quantities to be explicitly considered are the mean square displacement and 
the related time-dependent diffusion coefficient: 

d(t) = f ( a / a t ) ( n : ) ( t )  = lO‘d.m(T) 

where d ( m )  = D is the static diffusion coefficient and 4( t )  is the lattice analogue of 
the velocity autocorrelation function (VACF) (u,(O)v,( t ) ) .  

Our system is a square lattice with unit lattice distance, with N sites labelled 
n = (n,., n,,), and with periodic boundary conditions. The lattice has two types of 
bonds: impurity bonds with ‘conductance’ a (occurring randomly with concentration 
c )  and bonds with a. = 1 (their concentration is (1 - c ) ) .  On this random lattice we 
consider a random walker ( RW), whose probability distribution is described by the 
master equation: 

where p denotes a nearest-neighbour lattice vector: *&, *<”. To every bond (n, n + p )  
we have assigned a random variable (cl,,,+P = 1 - bcn,n+p, where c , , , + ~  = 1 with probabil- 
ity c and c,,,+,, = 0 with probability (1  - c ) .  Thus, the impurity bonds ( c , , ~ + ~  = 1) have 
a conductance a = 1 - b 3 0, and those of the host lattice ( c , , ,+~  = 0) have go = 1. The 
model considered here is a continuous time RW (namely with a Poissonian distribution 
of pausing times) and it describes unbiased or blind ants ( a  =0) or termites ( a  >> 1). 
In a time d t  the probability for hopping across a bond (n, n + p )  is ($,,,+, dt/4), which 
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equals (a dt/4) = [(l  - b )  dt/4] for an impurity bond and (dt/4) for a bond of the 
host lattice. The probability for the RW to remain on the same site in a time dt  is 
(1 -2, (cl,,,+p dt) ,  which is by definition close to unity (also for termites). Once a 
termite hits a ‘superconducting’ bond or cluster of superconducting bonds it will leave 
the superconducting bonds on the average only in 1 out of a hops. The termites 
considered here are somewhat different from the ‘Boston’ and ‘Tel Aviv’ termites (Hong 
et al 1986). 

The main quantity of interest is the average probability distribution for a displace- 
ment from site m to site n in a time t, defined as P n - , ( t )  = N-’(p(ntlmO)), where 
p(ntlm0) = [exp(-tL)],,,, is the solution of the master equation with initial condition 
p(n01m0) = an,,,. The average is taken over the probability distribution of the set of 
random variables { cn,,+,}. 

The following symmetries hold for P n ( t )  (Straley 1977). Since (2) is invariant under 
the mapping a + a’ = l / a ,  t + t’ = at and c + c’ = 1 - c where c refers to the random 
variables { c , , , + ~ }  and to their average ( cn,,+,) = c we have 

P,(t ,c,a)=P,(at,  1-c , l /a ) .  (3)  

This implies D( c, a) = OD( 1 - c, l/a) for the static diffusion coefficient and c$( t, c, a )  = 
a2c$(at, 1 - c, l / a )  for the VACF. Since a square lattice with a random mixture of two 
different conductances is self-dual we further have D(c, a)D(c,  l / a )  = Di where Do= 
D(0, a) = f  is the diffusion coefficient of the host lattice. Combination of both sym- 
metries yields D( c, a ) D (  1 - c, a) = aDi, so that for the half-filled lattice D ( f ,  a) = 
JoD,. Self-duality induces an additional symmetry relation in the coefficient of the 
long time tail, as will be discussed later on. 

A resolvent formalism is introduced for the response function F (  q, z), which is the 
Fourier-Laplace transform of Pn ( t ) ,  namely 

(4) F ( q ,  z) = N - ’  exp[iq(n - m)]((z + L)-’),,,,, = ((z + L)-’),, 
n m  

where we have defined the Fourier representat@ A,,. of the matrix a,,,, in coordinate 
representation A,,, = N-’ Z,, exp[iq( n - m)]Anm. The response function generates 
the moments of displacement, so that the Laplace transformed mean square displace- 
ment becomes 

( n X z )  = - ( d 2 / a q W ( q ,  z ) lq=o .  

Next we split L into L= LO-SL, where Lo and -SL are obtained from (2) by 
replacing (cl”,,+, respectively by 1 and -bcn,n+p. The Fourier transforms of these 
matrices are 

Loqq*= 4 q ) S q , ’  

a&,,= (b /4N)  c c:: exp[i(q -q’)n1E!Yq)Eu(s) 
nu 

where E , ( q )  = 1 -exp(-iq,) with a = x, y and w ( q )  = 1-4 cos qx -f cos qv and c: = 
cn,,+,, is used as a more compact way of bond labelling. Note that only impurity 
bonds contribute to SL. We proceed with the perturbation expansion of ((z + Lo - 6L)-’) 
in powers of 6L, yielding F (  q, z) = g( q )  + g2( q ) M (  q, z), where M (  q, z) = 
2,,o((SLg)’-’GL),, with g,,.= g(q)6,,, and g(q) = (z+u(q))-I .  

Using a T-matrix resummation we regroup the terms in the perturbation expansion 
by adding successive terms referring to the same impurity, where the single impurity 
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T matrix is 

T(z) =$b[l -bJ(z)]-’ 
r 

J(z) = f w(q)[z + w(q)]-’, J9 
Here 5, . . . represents a sum ( c q  integral if N + CO) over the first Brillouin zone ( IBZ), 

expansion is obtained: 

M ( q ,  z)= N - ’ c  ( c ~ ) E , E ~ T + N - ’  E’ ( cEcP , )exp[ iq (n-m)]~~~2TG, , (n -m)T 

namely 5, . . . = N - ’  X q e l B Z .  . . = (27r) -2 I-,, j?,, dq, dq, . . . . The following T-matrix 

no w m B  

+ N - ’  C’ (cEcP,c:) exp[iq(n -s)]E,E$TG,,(~ - m )  
no.mP,sy 

x TG,,(m-s)T+ . . .  (6) 

where E, = E, (9) and where the prime on the summation signs indicates that consecutive 
bond labels are different, namely (na) # ( m p ) ,  ( m p )  # ( s y )  . . . . We have further 
introduced 

which is essentially (apart from goniometric factors E,E$ the probability for a displace- 
ment n on a uniform lattice. 

Next, the density expansion is considered. The first term in (6) accounts for all 
possible visits of the R W  to a single impurity (‘repeated ring collisions with a single 
scatterer’) and reduces to 4cw(q)T(z). This is the exact result to linear order in the 
impurity concentration, since all higher-order terms in (6) involve at least two scatterers. 
To obtain the O( c 2 )  contributions we select from (6) the collision sequences involving 
exactly two impurities. They have the structure [12], [121], [1212], [12121], 
[121212]. . . . We further observe that the corresponding density fluctuation reduces 
to (cIc2cIc2c1 . . .) = (clc2) = c2. By summing all possible walks between two different 
impurities we finally obtain an expression for F ( q ,  z), exact to O(c*) terms included. 
From the generating function F ( q ,  z) one can extract the Laplace transform of the 
VACF, denoted by O(z) =fz2(nf)(z), and one obtains after some algebra the VACF, 
exact to O( c2) terms included 

@( z) = t - cT( z) - c2 T (  z) E Rxx( n, z)/( 1 - Rf;,(  n, z)) 

The prime on the sums indicates that the terms with bond label (np) = (Ox) are excluded 
(restriction from the T-matrix resummation). The integral R,,(n, z) = G,,(n, z)T(z) 
contains a single crossing from scatterer 1 to scatterer 2 and all possible returns to 
scatterer 2, where n is the difference in positions between scatterer 2 and 1. We further 
note that the dependence on the ratio of the two conductances ( U  = 1 - b )  enters only 
through the single impurity T matrix, which reduces in the ‘pure ant’ limit ( b  = 1 )  to 
T(z) = 1/[4(1 -J(z))] and in the ‘pure termite’ limit ( 6 +  -00) to T(z) = 1/(45(z)). 
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The static di’ision coeflcient is obtained by setting z = 0 in (8), resulting in the 

(9) 

following density expansion: 

D = Q(0) = $( 1 + a , c +  ~ ~ , c ~ + o ( c ~ ) ) .  

As a consequence of self-duality the expansion coefficient satisfies a,( l/a) = -o , (a)  
and a z ( l / a ) = a : ( a ) - a 2 ( a ) .  

The theory to linear order in the impurity concentration is identical to the EMA 

and yields a, = -2b/(2 - b )  = -2( 1 - a ) / (  1 + a).  The coefficient of the O ( c 2 )  term can 
be expressed in rapidly converging lattice sums, containing the integrals Rap(  n, 0) that 
can be evaluated analytically for the relevant sites n close to the origin. The resulting 
value for the static diffusion coefficient D(c, a )  is extrapolated to finite c values and 
plotted in figure 1 as a function of the concentration for several values of a = 1 - b 3 0. 
Using the symmetry (3)  between high and low concentration we can also extrapolate 
from high concentrations, as shown in figure 1 .  The exact value D($, a )  = JoDo is 
also indicated. For the percolation case ( a  = 0) the density expansion yields D( c, 0) = 
( 1  - 2c - 0.210 75c2 + . . .)/4 vanishing at c = 0.48, whereas the exact percolation 
threshold for ZD bond percolation in a square lattice is c, = 4. 

For a values in the range 0.5 6 a < 1 the D(c, a )  values extrapolated from high 
and low impurity concentrations almost coincide and are therefore expected to give a 
good representation of D( c, a )  over the whole range of impurity concentrations. The 
location of the exact value D<f ,  a )  = JaDo for the half-filled lattice in figure 1 shows 
that for a values, say, with 0.75 d ad 0.9 at least O ( c 3 )  terms are needed to have a 
reliable prediction for D in the range 0.4s c s 0.6. For the percolation case, where 
a = 0, the ants are actually hopping on the percolation cluster far above threshold. If 

0 0.2 0.4 0.6 0.8 1.0 
C 

Figure 1. Diffusion coefficient D ( c )  plotted against concentration c of impurity bonds for 
several values of the impurity conductance U. The full curves are the extrapolations of the 
c expansion in (9);  the broken curves are obtained from the symmetry relation D(c,  u ) D (  1 - 
c, U )  = uD‘(0) with D ( 0 )  = $ and extrapolation of the (1 - c )  expansion. The exact value 
D($, U) = JuD(0)  is indicated by bold dots. For U = 0 (bond percolation) the new results 
(full curve) are compared with effective medium theory (-. -) and computer simulations 
(Kirkpatrick 1973). 
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the fraction of missing bonds increases, a fraction of the sites sit on islands surrounded 
by missing bonds. RW starting on these islands do not contribute to the static diffusion 
coefficient. As one needs to cut at least four bonds to make an island, this effect is of 
O(c4) in the concentration of missing bonds and does not yet interfere with our 
systematic density expansion. In the percolation case we have compared the results 
for the diffusion coefficient, obtained by Kirkpatrick from computer simulations with 
our results, exact to O( c’). Our O(c) result for the percolation case, D =a(  1 - 2c), is 
identical to the effective medium approximation ( EMA) which was already shown to 
be in reasonable agreement with the results from computer simulations and vanishes 
exactly at the percolation threshold, c p = &  for bond percolation on a square lattice 
(Kirkpatrick 1973). 

In order to study the long time behaviour of the VACF we need the dominant small- 
z singularity of @(z). We restrict ourselves first to O(c) terms in (8), which is 

@(z) = a [  1 - cb/(  1 -~J(z))] (10) 

representing the contributions from the ‘repeated ring collisions’. The dominant small-z 
singularity of the ring collision integral ( 5 )  has the form 

where we have used w (  q )  =;: $q2(q + 0). The singularity ( 1  1 )  induces a singularity in 
the VACF, given by 

@ ( z ) = @ ( 0 ) - ( ~ / 2 7 r ) b ~ ( 2 - b ) - ~ z  In z 

which leads to a l /t’  tail for long times. Identical results can be derived from the 
effective medium approximation (EMA),  which is exact to O(c) (see the review by Haus 
and Kehr (1986)). Using the EMA Odagaki et a1 (1983) have obtained the equivalent 
low frequency result for the AC conductivity, which becomes for a square lattice 

(U,  a) = Re @ ( i w ) = ~ [ l + l w l ~ ( l - a ) ~ / ( l  +a)’] 

with a = 1 - b. We quote here the dominant long time behaviour for a d-dimensional 
cubic lattice, exact to O(c), which can be obtained in a similar manner: 

b ( t )  % - f [ ~ ~ b ’ / ( d  - b)’ ] (d /2~t) ’ ’~ / ’  ( t + m ) .  (12) 
Something peculiar happens as b t 1 in the one-dimensional case where the percolation 
threshold is at cp = 0. For that case Denteneer and Ernst (1984) have calculated the 
exact long time tail for an arbitrary distribution of non-vanishing random variables 
+,,, defined below (2). In the present case the {+,,} are distributed according to (with 
b < l )  

f(+) = cS(+- -  1 - b ) +  ( 1  - c ) S ( + -  1) .  

The exact result for the long time tail in the VACF then becomes 

c p ( t )  = -ab’c(l - c ) ( l -  b+  b c ) - ’ ( D / ~ ) ’ / ’ t - ~ / ~  

with D-’ = 2[ 1 + bc/(  1 - b ) ] .  This formula clearly shows that the density expansion 
breaks down if c and 1 - b are both small such that 1 - b B c. However, for c < 1 - 6 
the above exact result reduces to (12). Next we consider the contribution to the long 
time tail of the VACF from scattering by two impurities. In order to extract from (8) 
the leading small-z singularity in O(c’) it is convenient to introduce the shorthand 
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notation SA(z) = A(z)  -A(O) for the dominant small-z singularity which appears to 
be proportional to z In z in the context of this paper. Using essentially the same 
arguments as in (1 1) one finds that the functions R,, ( n ,  z), appearing in (8), behave as 

6Rxx(n,  z )  = [ R x x (  n, 0 )  + l][b/(2 - b).rr]z In z 

S R , ( n , z ) = R , , ( n , O ) [ b / ( 2 - b ) . r r ] z  Inz. 

Because of the slow convergence of the lattice sums, representing the small-z singularity 
in (8), it is required that part of these sums are calculated analytically before the 
remaining part can be evaluated numerically. The required integrals Rap( n, 0) are the 
same as those occurring in a2 of (9), and the final lattice sums converge again very 
rapidly. We thus obtain the long time tail +( t )  = - P (  c, a)/  t2 (  t -P 03) with 

(13) P(c ,  0 )  = (1 /2r )b2(2 -  b)-’c( l+ c P ~ ) + O ( C ~ ) .  

The analytic expression for P I ,  which will not be quoted here, exhibits the symmetry 
property P ( c ,  a ) = P ( c ,  l / a ) .  The reason is that P ( c ,  a)  depends on a only through 
IT(O)l, defined in ( 5 ) .  Only in the two-dimensional case this quantity is invariant under 
the substitution a + a‘ = l/a. The same mathematical property guarantees the sym- 
metry relations of self-duality, discussed below (9), for the bond problem on the square 
lattice. Emst (1987) relates this symmetry directly to self-duality. Of course, we also 
have the general symmetry (3), which implies P ( c ,  a )  = P (  1 - c, l / a ) .  In combining 
both symmetries we find the relation P (  c, a )  = P (  1 - c, a). We have extrapolated the 
functional form (13) of p ( c ,  a )  to finite c values and plotted it in figure 2 for high and 
low concentrations at several values of the conductivity ratio U = 1 - b. 

0 0.2 0.1 0.6 0.8 1 
C 

Figure 2. The coefficient p ( c ,  U) of the long time tail of the VACF, c p ( f ) ,  plotted against 
impurity concentration c where t 2 q ( t ) =  - p ( c ,  U )  as f + m .  The curves for ~ ~ 0 . 5  are 
obtained from the low density series (13).  The results at high densities are obtained from 
the relation p(c,  U) = @ ( I  - c, U), as implied by the symmetries of homogeneity and self- 
duality. There does not seem to be a meaningful interpolation between high and low 
densities as in figure 1.  
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The result for the long time tail in these lattice models, c$( t )  = -p / t ' ,  is rather 
similar to the results for deterministic Lorentz models (Ernst et a1 1984), where 
backscattering or cage effects cause negative velocity correlations with very long 
memory. The ant and termite models have the advantage that much more detailed 
analytic information can be obtained for these models than for the Lorentz gas, since 
the kinetic theory for the latter model is much more complicated. The blind ant on 
the square lattice with bond disorder and  also with site disorder (Nieuwenhuizen et 
a1 1986) are the only Lorentz-type models with dimensionality d > 1 for which the 
coefficient p ( c ,  U) of the long time tail in the VACF could be calculated, exact to 
quadratic order in the density of scatterers. The plot in figure 2 also suggests that 
p (  c, o) has a strong dependence on the impurity concentration. Since we d o  not know 
the exact value of p ( c ,  U) for c = f ,  as was the case in figure 1 ,  it is hard to tell how 
to interpolate between the high and low density results. 

There is a further advantage over Lorentz gases: for our hopping model on a square 
lattice the ring collision integral J(z)  in ( 5 )  can be calculated explicitly in terms of 
the complete elliptic integral K ( x )  of the first kind, in very much the same way as 
done by Morita and Horiguchi (1971) for 2~ lattice Green functions with the result 
J (  z) = 4 - n-'z(  1 + z)-'K[( 1 + z)-']. Its known asymptotic properties enable us to find 
subleading asymptotic corrections in (12), namely 

(14) 

7 0 = ~ e x p l ~ - y + x / 4 - ~ / ( 2 b ) ]  (15 )  
with Euler's constant ~ ~ 0 . 5 7 7 2 .  In fact, using the properties of K ( x )  one can 
numerically invert the Laplace transform of (10) for all times. These O(c) results for 
the VACF are plotted in figure 3 for U = 0 and U = f and compared with the leading 
tail -t-' in (12) and the better approximation (14). The figure clearly shows that the 
VACF has not yet reached its pure asymptotic behaviour and that one cannot see the 
pure t-' tail in the time interval below 60 collision times. This time interval covers the 
typical range where one has searched in vain for the tail 4( t )  - - t - 2  in computer 
simulations on Lorentz gases (Alder and Alley 1983). In this time interval we have 
tried to fit the exact time dependence, predicted by (14), to the function q ( t )  = - B / t 2  
or, equivalently, its time integral, defined in (1 ), to the function d( t )  = D + B /  t. This 
was done by plotting d(t), obtained from (141, against l / t  and by measuring the 
apparent slope B. The result at U = 1 and (T = f was B = 1.9p and B = 1.5p respectively. 
This observation may explain why the reported values of p, measured in computer 
simulations on the 2D Lorentz gas (see, e.g., Alder and Alley 1983), are typically 
50-100°/~ too large. Thus we have to conclude that comparison of computer simulations 
and kinetic theory calculations for Lorentz-type models is only feasible for the presently 
accessible time intervals, if at least the first asymptotic correction term as in (14) and, 
preferably, the complete time dependence of c$( t )  are known theoretically. This has 
been shown convincingly in recent computer simulations by Frenkel (1986) for the 
long time tail of the VACF of a blind ant on a square lattice with site disorder 
(Nieuwenhuizen et a1 1986). 

We complete the information on the VACF by considering its short time behaviour. 
This could be done by taking the high frequency limit ( z - + m )  in ( lo) ,  which yields 
@'(a) = a( l -  bc). Thus, the VACF for very short times has the form +( t )  -:( 1 - bc)S+( t ) ,  
where a+( t )  is a Dirac delta function normalised as dta+( t )  = 1 .  However, these 

4 ( t )  2- -cb2[2n(2- b)2t2]-'{l + 4 b [ ~ ( 2 -  b ) ] - ' t - '  l n ( r / ~ 0 ) + O ( t - 2 ( l n  r ) ' ) }  
where 
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( b )  

t 

Figure 3. Velocity autocorrelation function -cp+(f)/c exact to O(c) for all positive times 
( f  +0) at two values of the impurity conductance = 1 - b. In ( a )  and (c)  the exact result 
(full curve) is compared with the short time expansion up to O( r4)  and the long time 
expansion of (14) (broken curves). In ( b )  and ( d )  the exact values (full  curve) of the 
VACF are compared with the long time tail 9( f )  = -p (c ) / f2  (- . -) and with cp( r )  in (14). 
( a ) B  = l , ( b ) B  = l , ( c ) B  = O S , ( d ) B  = O S .  

results are only consistent if O(c*) terms are neglected. Exact results to all orders in c 
can be obtained by calculating the response function (4) directly at short times: 

F(q, t )  =(exp(t~)) , ,  = 1 - t(L,,)+tt2(L2qq)+. . . . (16) 

Here we will not write down the explicit expressions for these coefficients, but only 
discuss its consequences for the VACF: 

(17) 
Here DE = $( 1 - bc) is the short time limit of the time-dependent diffusion coefficient 
( l) ,  f i ( t )= j idT4(T) ,  which is referred to as the Enskog or mean-field value. It 
corresponds to a RW on a uniform lattice with a local 'collision frequency' or hopping 
rate a( 1 - bc), which is determined by the local 'free volume fraction' ( 1  - bc). This is 
particularly obvious in the case of percolation (hard scatterers), where b = 1, so that 

4(  t )  2. DES+( t )  - (  b2/8)c(l  - C) +( b 2 / 3 2 ) ( 5  - 2 6  - ~c)c( 1 - c ) t + O ( t 2 ) .  
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(1 - c )  is the fraction of impurity-free bonds. There is no correlation between the 
velocities at two different times (no memory) of a RW on a uniform lattice, as shown 

However, the VACF of a R W  on a random lattice exhibits for finite times the so-called 
‘cage effect’, referring to the existence of memory effects leading to negative velocity 
correlations. Here 4+( t )  = 4( t )  - DES+(?) is, in fact, negative for all times. This bond 
model (together with the corresponding site version) is the only non-one-dimensional 
Lorentz-type or liquid-type model for which an exact prediction (to O( c) )  of the cage 
effect has been given. The cage effect is the combined effect of individual hoppings 
on the lattice (‘uncorrelated binary collisions’ in kinetic theory language) and one or 
more returns to the same impurity (‘repeated ring collisions’). The negative short time 
part ++(O) = -Qc( 1 - c)b2  can be explained in a quantitative manner from the notion 
that a RW on a random lattice has an increased probability of being backscattered 
(Ernst 1986, Haus and Kehr 1986). 

Finally it is instructive to consider the time-dependent diffusion coefficient d( t )  
in (1). Its short time value &O+) = DE was discussed above. Its long time value is 
determined by the cage effect, which substantially reduces the short time value as 
shown in figure 4, where the normalised time-dependent diffusion coefficient is defined 
as 

by DES+(t). 

d ( t )  = (d(t) - DE)/ (DE - DO) 

with Do=:. If we write the relative difference, E = 1 -D(c ) /D(O)  = E ~ + E ~ ~ + O ( C ’ ) ,  
then we have for the Enskog value = bc and for the repeated ring (cage) contribution 

t 

Figure 4. Decrease d ( r )  in time of the time-dependent diffusion coefficient & r ) ,  defined 
in (IS), for several values of the conductance U of the impurity bonds (from top to bottom 

1 I L I 2  4 
I 1 0 9  5 ,  41 21 T, 3). 
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E R R  = b 2 c / ( 2  - b)  with E ~ J E ~  = b / ( 2  - b) with b d 1. For hard scatterers (percolation, 
U = 0) and superconducting bonds (a + CO) the cage effect is obviously the strongest. 
It also follows from 4( t )  = - p /  t 2 (  t + CO) that the diffusion coefficient d( t )  = 
D + p /  t (  t + CO) approaches its static value only very slowly. 

Acknowledgments 

ThMN was supported by the ‘Stichting voor Fundamenteel Onderzoek der Materie’ 
(FOM), which is sponsored by the ‘Stichting voor Zuiver-Wetenschappelijk Onderzoek’ 
(ZWO). 

References 

Alder B J and Alley W E 1983 Physica 121A 523 
Argyrakis P and Kopelman F 1980 Phys. Rev. B 22 1830 
Costa U M S, Tsallis C and Schwachheim G 1986 Phys. Rev. B 33 510 
Coniglio A, De Angelis U, Forlani A and Lauro L 1977 J. Phys. A: Math. Gen. 10 219 
Denteneer P J H and Emst M H 1984 Phys. Reo. B 29 1755 
Derrida B 1983 J. Stat. Phys. 31 433 
Emst M H, Machta J, Dorfman J R and Van Beijeren H 1984 1. Stat. Phys. 34 413, 477 
Ernst M H 1986 Recent Developments in Nonequilibrium llennodynamics, Fluids and Related Topics (Lecture 

- 1987 Physica A to be published 
Erpenbeck J J and Wood W W 1985 Phys. Reo. A 32 412 
Fish R and Harris A B 1978 Phys. Rev. B 18 416 
Frenkel D 1986 submitted 
Garboczi E J and Thorpe M F 1986 Phys. Reo. B 33 3289 
Gaunt D S and Sykes M F 1983 J.  Phys. A: Math. Gen. 16 783 
Harris A B and Kirkpatrick S 1977 Phys. Rev. B 16 542 
Haus J W, Kehr K W and Kitahara K 1983 2. Phys. B 50 161 
Haus J W a n d  Kehr K W 1986 Phys. Rep. submitted 
Herrmann H J, Derrida B and Vannimenus J 1984 Phys. Rev. B 30 4080 
Hong D C, Stanley H E, Coniglio A and Bunde A 1986 Phys. Rev. B 33 4564 
Kirkpatrick S 1973 Rev. Mod. Phys. 45 574 
Luck J M 1985 J. Phys. A: Math. Gen. 18 2061 
Morita T and Horiguchi T 1971 J. Math. Phys. 12 981 
Nieuwenhuizen Th M, van Velthoven P F J and Emst M H 1986 Phys. Rev. Lett. 57 2477 
Odagaki T 1986 Phys. Rev. B 33 544 
Odagaki T, Lax M and Puri A 1983 Phys. Rev. B 28 2755 
Pandey R B and Stauffer D 1983 Phys. Rev. Leu. 51 527 
Roerdink J and Shuler K 1985 1. Stat. Phys. 41 581 
Stinchcombe R B and Watson B P 1976 1. Phys. C: Solid State Phys. 9 3221 
Straley J P 1977 Phys. Rev. B I5 5733 
Watson B P and Leath P J 1974 Phys. Rev. B 9 4893 
Wilkinson D, Langer J S and Sen P N 1983 Phys. Reo. B 28 1081 

Notes in Physics 253) (Berlin: Springer) p 175 


